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Abstract
The density-matrix renormalization group (DMRG) is employed to calculate
optical properties of the half-filled Hubbard model with nearest-neighbour
interactions. In order to model the optical excitations of oligoenes, a Peierls
dimerization is included whose strength for the single bonds may fluctuate.
Systems with up to 100 electrons are investigated, their wavefunctions are
analysed, and relevant length scales for the low-lying optical excitations are
identified. The approach presented provides a concise picture for the size
dependence of the optical absorption in oligoenes.

1. Introduction

One of the main goals in the field of π-conjugated polymers is the fabrication of opto-electronic
devices such as solar cells, light-emitting diodes, and displays [1]. The operating part of these
devices is a thin (spun-cast) film of a polymer between two electrical contacts through which
holes and electrons are injected into the film. Evidently, the resulting excited electron–hole
states in the disordered polymer film determine the optical properties of the whole device. The
simplest access to them is by measurement of the absorption of the polymer film.

More information is provided by the so-called oligomer approach [2]. Oligomers of
increasing length � are synthesized, where � is a multiple of a monomer repetition unit. Quite
universally, one observes a bathochromic shift for the lowest-energy absorption peak, i.e.,
Eex(�) monotonically decreases as a function of �. For medium-sized oligomers there is a
regime where Eex(�) drops almost linearly in 1/�, and only the smallest oligomers may deviate
from the linear fit. For larger oligomers, however, Eex(�) appears to saturate quickly [3]. It is
also known that perfectly ordered polymers still have a finite gap for optical excitations, i.e.,
they are insulators [4].

The aim of this work is to study this length dependence of the optical absorption
theoretically and identify the existing length scales in ordered and disordered oligomers. As a
generic example for a π-conjugated system one can choose polyacetylene and the homologous
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oligomers, the oligoenes. Here, � is given by the number L of carbon atoms in the conjugated
system whose average distance is a0: � = (L − 1)a0.

As a starting point, ordered oligoenes can be described by the Peierls model [5] which
correctly describes polymers as insulators. Moreover, in a Peierls insulator the lowest excitation
energy at the Fermi vector kF (antiperiodic boundary conditions) becomes

EP
ex(L) = εP

+(kF) − εP
−(kF) = 2t� +

tπ2(4 − �2)

�

1

L2
(1)

for large systems, L � π
√−1 + 4/�2. The parameter � accounts for the bond alternation.

From (1) one can conclude that the convergence towards the Peierls gap is quadratic in 1/L.
This result does not contradict the experimental observation of a linear behaviour in 1/L for
medium-sized oligomers, as in this range a Taylor expansion is always a good approximation.

Apart from the length scales set by the nominal oligomer size L there is another important
length scale in the problem due to the electron–electron interaction. The importance of the
electron–electron interaction was pointed out a long time ago [6, 7]. In fact, well-ordered
polydiacetylenes display excitons with a substantial binding energy [4]. Calculations for
ordered oligomers and polymers have been performed recently on the basis of Wannier
theory [8], the GW approximation to density functional theory [9, 10], strong-coupling
approaches [11, 12], and numerical investigations of interacting electron systems [13–16] and
interacting electron–phonon systems [17]. These investigations show that the average electron–
hole distance, 〈reh〉, is an important length scale for the optical absorption of oligomers, specific
to the monomer building unit. This explains the deviations for the smallest oligomers from an
expected behaviour, as finite-size effects seriously hamper the formation of a bound electron–
hole pair.

The microscopic theoretical approaches presented so far apply to ordered chains. Disorder
may break down longer oligomers into shorter, ordered chains. According to a basic statistical
analysis of this ‘hard-disorder’ model [18], oligomers with the full nominal length L are highly
unlikely to be found for large L, and the ‘typical’ chain length, L typ, increases only very slowly
with L. This is one reason for the observed saturation effect of Eex. ‘Soft disorder’ is induced
by a random bending of ordered segments against each other. The electron-transfer matrix
elements connecting the segments then depend on the (small) bending angle ϑ . As shown
in [19], this can turn the quadratic dependence (1) back to a linear behaviour of Eex(L) on
1/L,

E sP
ex (L) = 2t� + b′/L . (2)

This also supports the observation of a linear 1/L behaviour of Eex(L) for medium-sized
oligomers. L typ is in this case defined as the correlation length for the coplanarity of ordered
segments.

In general, the length dependence of the optical excitations of a polymer film is an interplay
between three different length scales: L, the nominal length of the oligomers, which are broken
down into segments of typical length L typ by disorder effects, and reh, defined by the electron–
electron interaction. A minimal microscopic description of oligoenes should combine the
microscopic approaches for the ordered systems with the statistical ones for the disordered
systems in order to cover all three length scales. Therefore, a suitable Hamiltonian includes a
bond alternation due to the Peierls distortion, possible formation of bound electron–hole pairs
due to the Coulomb interaction, and soft disorder due to torsion or bending of the oligomer
chain. The experimental situation where long oligomers appear to be cut into smaller chains can
be taken into account by a suitable average over chain-length distributions. A more quantitative
analysis will also consider polaronic effects due to the electron–lattice coupling.



Peierls–Mott insulators with bond disorder 4095

This programme is carried out in the following to some extent. In section 2 the extended
Peierls–Hubbard model is defined, which takes into account the bond alternation as well as
a local and nearest-neighbour Coulomb interaction in perfectly ordered chains. In section 3
some details are given on the density-matrix renormalization group (DMRG) [20] which is
used for the numerical investigation of this model, and a scheme is recalled for analysing
excited-state wavefunctions in interacting electron systems [21]; this scheme proves equally
applicable in the presence of disorder. In section 4 results are presented for ordered chains.
For the single-particle gap and the resonance of the first excited state a quadratic convergence
in 1/L is found, and plausible explanations are given for this observation. In section 5 the
soft disorder in the chain is modelled by electron-transfer amplitudes for the single bonds
which depend on randomly chosen torsion angles. The consequences of soft disorder on the
excitation energies are investigated as well as the wavefunctions for chains of fixed size, and
hard disorder is simulated by a simple profile for the distribution of chain lengths. Section 6
summarizes the main results.

2. Model Hamiltonian

This work focuses on the general properties of π-conjugated oligomers. A generic model is
the extended Peierls–Hubbard (EPH) model for oligoenes which provides a good compromise
between the accuracy of the description and a reasonable yet tractable system size.

2.1. Extended Peierls–Hubbard model

One starts from a minimal basis of orthogonal pz (Wannier) orbitals φi (�x) centred at the i th
site (carbon atom) of the oligomer chain at �ri . The operators ĉ†

i,σ (ĉi,σ ) create (annihilate)

an electron with spin σ in the orbital φi (�x). The number operator n̂i,σ = ĉ†
i,σ ĉi,σ counts the

electrons with spin σ on site i , and n̂i = n̂i,↑ + n̂i,↓. The EPH Hamiltonian reads

ĤEPH = (−t)
L−1∑

i=1,σ

(
1 − (−1)i �

2

) (
ĉ†

i+1,σ ĉi,σ + h.c.
)

+ U
L∑

i=1

(
n̂i,↑ − 1

2

) (
n̂i,↓ − 1

2

)

+ V
L−1∑

i=1

(
n̂i − 1

) (
n̂i+1 − 1

)
. (3)

Open boundary conditions apply. The first term represents the kinetic energy of the electrons
and their potential energy with respect to the atomic cores. The electron-transfer integral t
is supposed to be finite only between nearest neighbours. The geometric effect of alternating
single and double bonds is accounted for through the variation of t by the amount �. In
this form the model allows the investigation of properties of perfectly ordered chains. The
geometric relaxation of the excited state, however, is neglected.

The next two terms in (3) describe the electron–electron interaction. The occupation of
a single site with two electrons costs the Coulomb energy U (Hubbard interaction). Two
electrons on two neighbouring sites repel each other with strength V . A chemical potential is
added in such a way that half-filling, one electron per orbital, is guaranteed due to particle–hole
symmetry.

Natural units are used in which a0 = t = e = h̄ = 1. This leaves three parameters
for the description of real materials: U , V and �. For the calculations presented later on
three parameter sets from the literature are studied, which have been designed to describe
polyacetylene.
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Table 1. Three parameter sets used in equation (3).

Label References �(t) U(t) V (t)

A [12] 0.38 3 1
B [13] 0.2 3 1.2
C [14] 0.11 2.5 0.625

The first two parameter sets (A, B) lead to bound electron–hole pairs for the lowest excited
state but the third one, C, does not. The parameter sets allow us to test the analysis presented
in section 3.2; therefore, parameter set C which does not reflect the experimental reality is also
included.

3. Methods

3.1. Density-matrix renormalization group (DMRG)

The DMRG [20] is used to obtain the ground state and excited states of the EPH Hamiltonian (3)
in a numerically exact way. This variational method is very accurate for quasi-one-dimensional
systems with hundreds of electrons; see [22] for a review. In this work the maximum number
of block states kept to describe the target states is m = 400. During a calculation m is
increased stepwise and for each m a converged state is determined. From an extrapolation
of the discarded weight and the target-state energy, the DMRG error in the energies has been
calculated. This error is ηs � O(10−6) for the energies of single target states, e.g., for Eex(L).
The calculation of the optical spectra involves up to ten target states. The increase in target
states also increases the DMRG error to ηa � O(10−3). The DMRG error is of the same order
as the resulting energy distributions due to the disorder only for very long chains and very
small disorder; the DMRG error is much smaller in all other cases.

The total spectral weight Wtot , i.e., the frequency integral over the optical conductivity
σ(ω), can be expressed in terms of the ground-state expectation value of the kinetic energy
operator [23],

Wtot =
∫ ∞

−∞
σ(ω) dω = − π

2L

〈
T̂

〉
. (4)

Consequently, the contribution Ws(L) of a certain state at the resonance energy Es is given by

Ws(L) = α(Es)

Wtot
(5)

α(Es) = π

L

∣∣∣
〈
�s

∣∣∣D̂
∣∣∣ �0

〉∣∣∣
2

(6)

where D̂ = ∑
l l(n̂l − 1) is the current operator and |�0〉, |�s〉 are the ground state and the

sth excited state, respectively.
The maximum length L of the oligomers investigated is varied in the range

8 � L � 200. For the calculation of Eex(L), systems of size L =
8, 12, 16, 18, 20, 24, 28, 40, 56, 76, 100, 140, 200 are studied. For spectra and disordered
oligomers, only the system sizes L = 12, 16, 20, 24, 28, 56, 76, 100 are considered. The
results for L = 4, especially for the disordered cases, indicate that the influence of the
boundaries is dominant. Therefore, L = 4 is not included here.
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3.2. Analysis of wavefunctions

In a recent publication [21] two of the authors formulated a general interpretation scheme for
excited-state wavefunctions in correlated electron systems. Here, it is adapted to wavefunctions
as obtained from the EPH model.

The scheme is based on the description of the absorption process with Fermi’s golden
rule or the Kubo formula. There, the oscillator strength fs,0 for the optical transition from the
ground state |�0〉 to some excited state |�s〉 (s = 1, 2, . . .) is proportional to the square of the
absorption amplitudes As,0. With this quantity one can define a coarse-grained, spin-averaged
electron–hole density ps,0(i, j) for electrons in an atomic volume Vi and holes in an atomic
volume Vj .

In the case of the EPH wavefunctions, one has to replace the general orbitals ϕp(�x) in
the description by the Wannier orbitals φi (�x) used in the motivation of (3). The fact that the
overlap between Wannier orbitals is negligible simplifies ps,0(i, j) and one finds

ps,0(i, j) =
∑

σ

∣∣∣〈�s | ĉ†
j,σ ĉi,σ |�0〉

∣∣∣
2
. (7)

Finally, after normalization, one can interpret

Ps,0(i, j) = ps,0(i, j)
∑

i, j ps,0(i, j)
(8)

as the probability of finding an electron–hole pair with the atomic coordinates (i, j) in the
excited state with respect to the ground state. That means that one can only measure an
excitation, if the respective excited state has an electron–hole character with respect to the
ground state.

With the help of the probability distribution Ps,0(i, j) one can derive various averages.
For example, one may approximate the oligoene structure by a perfectly linear chain with a
constant lattice spacing. Then, reh = |i − j | is the distance between two carbon atoms i, j ,
and the probability of finding an electron–hole pair at a distance reh is given by

Ps,0(reh) =
∑

i, j

Ps,0(i, j)δreh−|i+ j |. (9)

The average electron–hole distance is then given by

〈reh〉s,0 =
∑

reh

reh Ps,0(reh). (10)

Equations (8)–(10) are used later to interpret the wavefunctions of the excited states. Apart
from figure 5 only the first excited singlet state, the ‘1Bu state’, is investigated. Consequently,
for s = 1 the indices (s, 0) are dropped. Note that the basic equations (8) and (9) can be derived
using only one approximation, namely the negligible overlap between Wannier orbitals.

4. Results for ordered chains

4.1. Excitation energies and electron–hole distances

Figure 1 shows the energies and weights of the first nine optically allowed excitations for
L = 100. The DMRG code used here does not distinguish between different symmetry
sectors other than total z-component of the spin, total number of particles, and particle–hole
symmetry of the EPH model in (3). Since neither reflection nor inversion symmetry has been
incorporated, optically allowed ‘Bu’ states alternate with symmetry-forbidden ‘Ag’ states of
zero weight.
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Figure 1. Excitation energies Eex of
the first nine optically excited states
for L = 100. Parameter sets from
table 1, A, B, and C, are shown from
right to left. The weights Ws (L) are
obtained from (5). A thin, dashed line
marks the one-particle gap (11).

The three different parameter sets lead to optical absorption in different energy regions.
For the sets A and B 60%–70% of the total spectral weight Wtot is contained in the first nine
states. As expected, the first excited state dominates, W1 ≈ 50% Wtot. In contrast, the first
optically allowed excitation no longer dominates the absorption spectrum for the parameter
set C. Moreover, the first nine optically excited states capture only 45% of the total weight.
The missing spectral weight for all parameter sets is presumably distributed among a large
number of high-energy states with vanishingly small weights. In the thermodynamic limit,
these states eventually merge into an absorption band.

Also shown in figure 1 are the respective values of the one-particle gap, defined by

Egap(L) = E0(L, N + 1) + E0(L, N − 1) − 2E0(L, N). (11)

E0(L, N) is the ground-state energy of an oligoene with N electrons and length L; for half-
filling, N = L. Egap(L) is the energy needed to create independently an electron and a hole in
an oligomer and is therefore a measure for the excitation energy of an unbound electron–hole
pair. Consequently, the binding energy of a bound electron–hole pair is given by

Eb(L) = Egap(L) − Eex(L). (12)

For L = 100, as seen in figure 1, bound electron–hole pairs are present for the parameter
sets A and B, but the binding energy is very small for the parameter set C.

In figure 2 the excitation energy is plotted for the lowest excited state versus the inverse
system size in the range 8 � L � 200 together with the respective values of the one-particle
gap. The parameter sets A, B result in a bound electron–hole pair in the polymer limit, Eb > 0
for all L, whereas the parameter set C gives rise to unbound electron–hole pairs, Eb(L) → 0 for
L → ∞. This is in line with the results of the corresponding work [12–14]. More important is
the quadratic convergence of the excitation energy and the single-particle gap with the inverse
system size,

EEPH
ex (L) = E∞ +

A

L2
. (13)

This form represents all data points for 16 � L � 200 very well, as shown in figure 2. The
respective stability indices are R2 � 0.96. A linear fit works for small oligoenes, L � 24, for
the reasons discussed in the introduction. This is indicated by thin lines in figure 2. Apparently,
such a linear behaviour for small oligomers has little to do with the true scaling form of the
energy of the bound electron–hole pair.
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Figure 2. Excitation energy Eex(L) (crosses) and the one-particle gap Egap(L) (diamonds) for
oligoenes with 8 � L � 200 carbon atoms from the EPH model (3) using the parameter sets of
table 1. From top to bottom: dashed (A), solid (B), and dotted lines (C) are parabolic fits through
the data points excluding L = 8, 12. Thin lines represent linear fits through the data points for
8 � L � 24.

Table 2. Binding energy Eb, as defined in (12), for the L = 200 oligomer (error ηs � O(10−6)),
curvature A of the quadratic fit (13) for 16 � L � 200 in figure 2, and mass of the bound electron–
hole pair mqp from (15). The fourth column expresses mqp in units of the electron mass me under
the assumption that t = 2 eV and a0 = 1.4 Å. In the last column 〈reh〉 from (10) is given as the
average electron–hole distance of the L = 100 oligomer in units of the lattice constant a0.

Label References Eb A mqp mqp/me 〈reh〉
A [12] 0.090 39.5 0.124 0.24 5.1
B [13] 0.103 60.6 0.081 0.16 5.9
C [14] 0.005 93.3 0.053 0.10 17.6

Table 2 gives the binding energy for L = 200, and the curvature A in (13). The quadratic
scaling form (13) for a bound electron–hole pair is readily understood in terms of a quasi-
particle moving freely in a box of size L. Above the primary excitation energy E∞, the bound
electron–hole pair naturally obeys a quadratic dispersion relation,

εqp(k) = k2

2mqp
, (14)

for small k = nπ/L, 1 � n � L. In this equation, k denotes only the inverse system size and
not the momentum of the particle in an infinite or periodic system. Therefore, one can identify

mqp = π2

2A
(15)

as the mass of the quasi-particle. This quantity is also given in table 2, both in the applied
units and in units of the electron mass me for t = 2 eV and a0 = 1.4 Å. The electron–hole
pairs have the expected mass which is somewhat below their reduced mass µ = me/2.

It is seen that for both the bound and unbound cases the excitation energy converges
quadratically as a function of 1/L as does the single-particle gap. This implies that
quasi-particle excitations display a quadratic dispersion near the single-particle gap. This
can be verified explicitly for Peierls insulators—see (1)—and also for Mott–Hubbard
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Figure 3. Average electron–hole
distances 〈reh〉 from (10) as a function
of system size L: dashed line A; solid
line B; dotted line C (cf table 1).

insulators [24, 25]. A quadratic dispersion relation is equivalent to the statement that the
group velocity for the single-particle excitations vanishes, and the quasi-particle states at
the gap correspond to standing waves. Indeed, the gap formation in Peierls and Mott–
Hubbard insulators can be understood as a consequence of the scattering of waves. This
picture quite naturally applies to Peierls–Mott insulators, too, so the gap formation goes hand
in hand with a vanishing group velocity for elementary excitations. This is what is found
numerically [14, 15, 17], as seen in figure 2. For a more rigorous treatment of gapped systems
with few elementary excitations, see [26].

More insight into the properties of the excited states is gained by an analysis of the average
electron–hole distance 〈reh〉 from (10). In figure 3 one sees that the parameter sets of A and B
lead to a saturation of the electron–hole distance for L > 50. The value for L = 100 is given
in table 2. In other words, 〈reh〉(L = 100) � L so the value at L = 100 represents the
electron–hole distance in the polymer limit. For the parameter set C, 〈reh〉 does not appear
to saturate, which is in accord with a vanishing binding energy, Eb(L) → 0 for L → ∞.
Apparently, the electron–hole distance is a very important length scale for oligomers.

For the two bound cases, the binding energies Eb are similar and relate to similar values of
〈reh〉 in table 2. Comparing the binding energies, one expects a slightly smaller 〈reh〉, larger A,
and smaller mqp for the parameters B than for the set A, in contrast to what is seen. The reason
for this behaviour lies in the substantial difference in the Peierls dimerization � between the
two cases. Apparently, the Peierls dimerization � plays an important role for the structure of
the excited-state wavefunction.

In figure 4 the probability function P(reh), equation (9), is shown. A bound electron–hole
pair leads to narrow probability distributions whose shape does not vary much with system
size. An unbound pair leads to distributions which broaden with increasing system size, in
accordance with the previous findings. The zigzag structure of P(reh) can be explained by
fluctuations in the ratio of double to single bonds at distance reh. Even distances, reh, always
cover the same amount of single and double bonds, while odd distances can have one double
bond more. As the electron–hole pairs form predominantly on double bonds, the value of
P(reh) fluctuates.

4.2. Excited-state wavefunction

Finally, the full probability function is addressed: P(i, j) from equation (8). A bound electron–
hole pair produces large values of P(i, j) along the diagonal, where i ≈ j . Accordingly, the
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Figure 4. P(reh) (9) for L =
12, 20, 28, 100: top panel, A; middle
panel, B; bottom panel, C (cf table 1).

off-diagonal region does not carry significant weight, because large distances between the
electron and hole are not probable.

This plot also reveals whether or not the electron–hole pair is localized in a certain region
of the oligoene. A continuous distribution of weight along the diagonal is a signature of a pair
which is delocalized over the whole system, which is to be expected for a perfectly ordered
system.

The graphs of the first two rows of figure 5 are virtually identical for parameter sets A
and B. Therefore, only parameter set A is used in the first row, where P(i, j) is shown for the
first, second, and third excited states and the size of the oligomer is fixed at L = 100. All three
cases correspond to bound electron–hole pairs, and differ only in the number of nodes in their
wavefunction. Apparently, the notion of a ‘electron–hole pair-in-a-box’ applies very well to
this case. The states with an even number of maxima in P(i, j), i.e., the states with ‘gerade’
symmetry under inversion, carry no spectral weight in the optical absorption.

In the second row of figure 5 only systems from parameter set B whose size is varied
are shown and only the first excited state is examined. On the left panel, for L = 100, a
delocalized electron–hole pair is seen. In the middle panel, for L = 28, the oligomer is large
enough to support a bound electron–hole pair, and P(i, j) quickly drops to zero in the off-
diagonal region. For the smallest oligomer investigated, L = 8 in the right panel, the scattering
by the boundaries is too strong to allow a bound pair.

In the third row of figure 5 the first excited state is displayed for the parameter set C and
L = 100. In contrast to the first panels for the other two parameter sets, there is considerable
weight in the non-diagonal parts of P(i, j), a clear signature of an unbound electron–hole pair.

These considerations only apply to perfectly ordered oligomers. The next section shows
how disorder affects this picture.

5. Results for disordered chains

5.1. Disorder model

For the description of hard- and soft-disorder effects only the parameter set A is used. In
order to incorporate soft-disorder effects in the microscopic description, it is assumed that
the molecules do not have a planar, zigzag geometric structure, but that the single bonds in
the oligoenes are free to rotate. Due to the π-conjugation one expects an energy cost for the
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Figure 5. Ps,0(i, j) from (8); parameter sets from table 1. Upper row: first three excited states
(bound electron–hole pairs) using the parameter set A for L = 100; middle row: first excited states
using the parameter set B for L = 100, 28, 8; bottom row: first excited state (unbound particle–hole
pair) using the parameter set C for L = 100.

rotation of a single bond: the conjugation is broken if the π orbitals are orthogonal to each
other. One would therefore expect that a reasonable estimate for the torsion angles will not
exceed ϑ ≈ 40◦. This is the simplest way to include disorder on a low-energy scale.

A disordered oligoene then consists of rotated single bonds along the chain with rotation
angles ϑ taken at random from a chosen probability distribution. To lowest order one may
assume that this rotation only affects the electron-transfer integral ts for the (L − 2)/2 single
bonds, which are replaced by a random number. For simplicity, the numbers ts are taken with
uniform probability from an interval which is set by |tmin

s | < |torder
s | = 1 − �/2,

ts ∈ [
tord
s , tmin

s

]
. (16)

For fixed tmin
s one averages over 20 realizations for every nominal oligomer length L.
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By varying tmin
s it is possible to adjust the disorder strength. A rough estimate of the

relation between the electron-transfer integral and the rotation angle ts(ϑ) can be inferred
from the following argument. A rotation by ϑ = π/2 reduces |ts | from the ordered values
|torder

s | (parallel orbitals) to zero (orthogonal orbitals), and ts(ϑ) should be symmetric and
2π-periodic. The choice

ts(ϑ) = tord
s cos(ϑ) (17)

fulfils these conditions. The maximal angle is obtained from |tmin
s | = |ts(|ϑmax|)|. Certainly,

not all single bonds are affected by disorder in the same way; for example there can be
correlations in the twisting angles from site to site. Nevertheless, this description of the soft
disorder should be reasonable as long as ϑmax is not too large.

The disorder model (16) with small |ϑmax| in (17) lacks hard disorder due to kinks,
chemical/physical impurities, and the like. Some of these sources of disorder act as a source
of ‘soft disorder’ but they may also lead to a disruption of the oligomer chain. As in [18],
‘hard disorder’ for oligomers of nominal length L is defined via the statistical average over a
uniform distribution of oligomer chains of the length Li � L. All oligomer chains are also
subject to the soft-disorder model with |tmin

s | = 0.71.
A very simplistic model for the probability distribution of the Li is the assumption that the

L = 100, 76, 56 oligomers can only break into shorter segments of length L1 = 28, L2 = 56,
L3 = 76. This means that a film of the L = 100 oligomer is assumed to consist of molecules of
length 100, 76, 56, and 28 each having the same concentration. A film of the L = 76 oligomer
consists of molecules of length 76, 56, and 28 with the same concentration. Finally, a film of
the L = 56 oligomer consists of molecules with L = 56 and 28 in equal shares. (A justification
of this assumption is given in section 5.3.) This somewhat overestimates the importance of
the longer chains as in [18] and makes the effects of hard disorder less prominent.

5.2. Soft disorder

5.2.1. Optical spectra. In figure 6 the spectral weight W L(E) of the first nine excited states
for L = 100 is shown. This quantity is defined as the average over M disorder realizations
with Gaussian broadening η,

W L(E) = 1

M

M∑

m=1

W m
s (L)Gη(Em

s − E), (18)

Gη(ω) = 1

η
√

π
exp

(−ω2/η2
)
, (19)

where W m
s (L) is the weight of the sth resonance in the mth realization at a given system size L;

see (5). In this case M = 20 and η = 3 × 10−3 which is of the order of the maximum DMRG
error ηa.

As seen in the left part of figure 6 not much changes for small twisting angles. When
ϑmax = 12◦, the individual resonances keep their relative weight and they are clearly resolved.
Thus, the behaviour very much resembles the ordered case; see figure 1.

In the right part of figure 6, where ϑmax = 28◦, the influence of the disorder is much
more pronounced. Substantial spectral weight is shifted from the first to the second resonance
which, due to the presence of disorder, is no longer symmetry forbidden. The line spectrum is
considerably smeared out, but individual resonances are still discernible, and the spectrum is
shifted to higher energies. Nevertheless, the distribution of single-particle gaps is still small
enough for identifying a binding energy of the electron–hole pair of the order of 0.1t (see the
error bar in figure 6).
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Figure 6. Spectral weight W L (E) of the first nine excited states for L = 100 and the parameter set A
(table 1), averaged over 20 realizations. Left: |tmin

s | = 0.79 (ϑmax = 12◦); right: |tmin
s | = 0.71

(ϑmax = 28◦). A thin vertical line marks the one-particle gap of equation (11) with its standard
deviation added on top.

A further increase of the disorder (|tmin
s | = 0.4, ϑmax = 60◦) leads to the situation where

different resonances from different realizations contribute to the same frequency,and individual
lines can no longer be identified. Finally, for very strong disorder fluctuations (|tmin

s | = 0,
ϑmax = 90◦), the inhomogeneous width of the first excited state is of the same order as its
binding energy. Neither situation is supported by experiments [2]. Therefore, tmin

s = 0.71,
i.e., moderate twisting angles of ϑ � 28◦, should be taken as a reasonable value for the (soft-)
disorder model and the parameter set A. This is also an a posteriori justification of the chosen
disorder model, as one does not need unrealistically large values of ϑmax in order to describe
the experimentally observed disorder effects.

5.2.2. Binding energy and distance of the electron–hole pair. As seen from figure 7 the shift
to higher excitation energies with increasing disorder occurs for all oligomer sizes. Also shown
in the figure are the average excitation energy of the lowest excitation Eex(L) and the average
one-particle gap Egap(L). The bars on the data points indicate the standard deviations δEex(L)

and δEgap(L) for the configuration average,

Eex(L) = 1

M

M∑

m=1

Em
ex(L),

Egap(L) = 1

M

M∑

m=1

Em
gap(L),

(20)

(δEex(L))2 = 1

M

M∑

m=1

[
Em

ex(L) − Eex(L)
]2

,

(δEgap(L))2 = 1

M

M∑

m=1

[
Em

gap(L) − Egap(L)
]2

,

(21)

and averages of other quantities are obtained accordingly. δEex(L) increases from the order
of 10−3 to the order of 10−2 when the disorder is increased from |tmin

s | = 0.79 to |tmin
s | = 0.71

which is the reason for the observed inhomogeneous line broadening in figure 6.
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Figure 7. Average excitation energy Eex(L) (circles) and average one-particle gap Egap(L)

(diamonds)—see (20)—for oligoenes with 8 � L � 100 in the Peierls–Hubbard model (3) for the
parameter set A (table 1). All lines are quadratic fits to the data presented. Solid lines: ordered
case |tmin

s | = |tord
s | = 0.81; dashed lines: |tmin

s | = 0.79 (ϑmax = 12◦); dotted lines: |tmin
s | = 0.71

(ϑmax = 28◦). The inhomogeneous broadening is indicated by the standard deviations (21); they
are discernible only for |tmin

s | = 0.71.
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Figure 8. Average electron–hole
distance, 〈reh〉 from (10), as a
function of L and the parameter set A
(table 1). Solid lines: ordered case,
|tmin

s | = |tord
s | = 0.81; dashed lines,

|tmin
s | = 0.79 (ϑmax = 12◦); dotted

lines, |tmin
s | = 0.71 (ϑmax = 28◦).

The quadratic dependence of the average gap and excitation energy with respect to the
inverse oligomer size 1/L is preserved. However, the lines in figure 7 are not now described
by (13), but by functions with an additional linear term in 1/L. This is in qualitative agreement
with the analysis of [19] which led to (2). For a quantitative analysis, larger system sizes and
more realizations are required; this is beyond the scope of the present work.

The overall offset of the average energies requires a closer inspection of the excited-state
wavefunction. In figure 8 the average electron–hole distance is shown,〈reh〉 from equation (10),
as a function of L. For the parameters chosen one still finds a bound electron–hole pair which,
at the same L, appears to be slightly smaller and more tightly bound than the electron–hole
pair in the ordered system.
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Table 3. Average binding energy Eb, average electron–hole distance 〈reh〉, and average segment
length r seg for L = 100 of the first excited state in the EPH model for the parameter set A (table 1).
Standard deviations are given in square brackets as the uncertainty in the last given digit.

Disorder Eb 〈reh〉 r seg

None 0.092[0] 5.10[0] 81
|tmin

s | = 0.79 0.095[2] 4.94[2] 72
|tmin

s | = 0.71 0.11[1] 4.39[8] 47

5.2.3. Excited-state wavefunction. The full distribution function Pm(i, j) for realizations
m of the disorder, as shown in figure 9, reveals an additional effect of disorder: localization.
All cases show that there is substantial weight only on the diagonal, which is the signature
of bound electron–hole pairs. The disorder effect on P(i, j) is twofold: the distribution is
distorted, as shown on the right part of figure 9, and it is ‘localized’ in the sense that there are
substantial parts on the diagonal where Pm(i, i) � max{Pm(i, i)}; see the left part of figure 9.
With increasing disorder, the fraction of oligomers that show a single-segment localization
increases. For |tmin

s | = 0.71 (ϑmax = 28◦), 18 of 20 oligomers give rise to a single-segment
P(i, j). In any case, one expects the disorder to localize the electron–hole pair because single-
particle wavefunctions are generically localized in one dimension [27]. It is important to
note that the segments are formed even though this is not an inherent property of the disorder
model used. The segments are formed by the underlying fluctuation of the ts : the fluctuations
are comparatively small over the range of the segment, and its boundaries are determined by
sudden drops in ts .

As the electron–hole pairs are constrained to chain segments, one can define a length
scale set by the disorder, rm

seg, which represents the number of carbon atoms on which the
electron–hole pair is present. As a cut-off criterion Pm(i, i) > 10−5 ≈ 10−2 maxi {P(i, i)} is
chosen, i.e., one demands the probability to be at least one per cent of the peak probability for
the ordered case. From this the average length of the segments as in (21) is calculated.

The results are summarized in table 3 where the binding energy Eb is given, as are the
average electron–hole distance 〈reh〉 and the average segment length r seg for L = 100 in the
EPH model for the parameter set A. As mentioned above, the average electron–hole distance
decreases with increasing disorder strength. The reason for this decrease is not the increase
of the binding energy, a quantity which not only depends on the energy of the excited-state
resonance but also on the size of the single-particle gap. Instead, the disorder ‘squeezes’
the electron–hole pairs into segments of length r seg. In the clean system, the excited-state
wavefunction essentially spreads over the whole chain, and one sees a reduction only at the
chain ends. In contrast, in the presence of substantial disorder the electron–hole pair is squeezed
into regions which are much smaller than the nominal oligomer size. For example, for L = 100
and ϑmax = 28◦ the system almost acts as if it was an ordered chain about half the actual size,
with a concomitant reduction of the electron–hole distance and an increase of the binding
energy; compare figure 7.

A close inspection of the excitation energies shows that ordered chains of the same size as
the segments have smaller excitation energies. The smaller chains show the same excitation
energy, however, if they exhibit the same fluctuation of the ts as in the segment. The conclusion
is that a long oligomer can be described as a small, disordered segment.

5.3. Hard disorder

The model for soft disorder must be supplemented with a model for hard disorder in order to
include the effects of kinks and impurities (see section 5.1). Figure 10 shows the result of the
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Figure 9. (a) Excited-state wavefunctions Pm(i, j) (8) for two different realizations for L = 100
and the parameter set A (table 1). Upper row: |tmin

s = 0.71| (ϑmax = 28◦), lower row: |tmin
s = 0.79|

(ϑmax = 12◦). Left part: single-domain localization; right part: multiple-domain localization: (b)
Pm(i, i) cut along the diagonal from (a), Pm(i, i).

averaging procedure for the optical spectra. When an oligomer of nominal length L = 100 is
investigated and it is broken into pieces of length Li = 28, 56, 76, 100, then the first excitation
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Figure 10. W̄L as in figure 6 for the parameter set A (table 1) and |tmin
s | = 0.71. From left to

right the arithmetic average is displayed over the results for 20 realizations for soft disorder at
lengths L = 100 (Li = 28, 56, 76, 100), L = 76 (Li = 28, 56, 76), L = 56 (Li = 28, 56), and
L = Li = 28.

broadens and higher excitations have a very small weight (upper left panel in figure 10). One
can make the same observation for L = 76 (Li = 28, 56, 76) and for L = 56 (Li = 28, 56).
In addition, those spectra resemble closely the one for L = 100, which is a signature of the
expected saturation effect [18]. Only small chains, L = 28, where only soft disorder is present,
permit the clear identification of isolated and narrow excited-state resonances.

Given the width of the structures it becomes difficult to assign a unique energy to the
excitation. Therefore, the centre of gravity of the distributions for the first excitation in
figure 10 is taken as representative for the position of the ‘typical’ resonance Ehd

ex (L) with
L = 100, 76, 56. These three energies as a function of nominal system size L are shown
in figure 11 (dotted line), together with the excitation energy of the ordered systems and the
soft-disorder model. As expected, the energy of the ‘typical’ excitation shifts further upwards
with respect to the soft-disorder case and one observes the typical saturation effect. Even
though the effects of the longest chains have been overestimated, Ehd

ex (L) saturates quickly
close the excitation energy for the shortest, unbroken chain Eex(L = 28) as predicted by [18].

6. Summary

In this work it has been confirmed that the generic size dependence of the excitation energy of
the first optically allowed state for large, ordered oligoenes is purely quadratic in 1/L [13, 14].
This behaviour is most easily understood for the case of bound electron–hole pairs which
can be described as independent particles in a box. Thus the electron–electron interaction
does indeed introduce a new length scale, the electron–hole distance, 〈reh〉, which one can
easily deduce from the wavefunction analysis. However, the generic scaling can only be seen
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Figure 11. Excitation energies of
parameter set A (table 1). Solid
line: ordered oligomers (figure 2);
dashed line: soft-disorder model with
|tmin

s = 0.71|; dotted line: hard-
disorder model with |tmin

s = 0.71| and
arithmetic averaging over oligomer
chains (figure 6).

when the system size is considerably larger than the electron–hole distance and the system
is ordered.

‘Medium-sized’, ordered oligomers of the order of several electron–hole distances show
substantial deviations from the quadratic law. In this region, a linear fit in 1/L better describes
the data for the excitation energy. However, this is accidental for ordered oligomers and mostly
due to the applicability of Taylor’s theorem to smooth functions. In fact, a regular behaviour
cannot be expected because two effects, binding and scattering of the pair by the boundaries,
compete with each other for medium system sizes. This is even more the case for the smallest
oligomers.

Soft disorder, e.g., fluctuations in the bending angle between neighbouring carbon atoms
on single bonds, sets a length scale r seg on which electron–hole pairs are localized. This
localization leads to a hypsochromic shift in the excitation energies. One can also observe a
redistribution of spectral weight due to symmetry breaking, and inhomogeneous broadening
of spectral lines, as expected. Additionally, the dependence of the excitation energies on 1/L
clearly shows a linear term.

The length scale r seg slowly increases with nominal system size L. However, it is difficult
to observe experimentally oligomers with the full nominal size. Instead, on top of the soft
disorder, there are kinks and impurities which effectively cut a long oligomer into segments
of a typical size L typ so that oligomers of a typical length with a typical r seg dominate the
optical excitation spectrum. The chance of observing well-ordered long segments very slowly
increases as a function of nominal chain length L.

In this work an interpretation scheme has been used for the excited-state wavefunctions
which was developed earlier [21]. This scheme is seen to work equally for ordered and
disordered systems, for semi-empirical methods as well as for the EPH model. Moreover, the
results indicate that the models for soft and hard disorder provide a suitable description of
disorder in π-conjugated oligomers. This work did not aim at a quantitative description of
the optical absorption of polymer films. For example, experimental data [28] suggest a much
steeper descent of Eex(L) from L = 8 to 16 than can be described using the parameter sets
A, B, and C. Additionally, the electron–hole distance 〈reh〉 which is experimentally available
via electro-absorption [4], is not perfectly reproduced even though it is found to be of the
right order of magnitude. An improved description for ordered polydiacetylenes, e.g., with
long-range interactions and polaronic relaxations, should remedy these shortcomings.
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